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I studied the following 3 topics:

(1) Polish groups of finite type and its characterization (with Andreas Thom and Yasumichi Matsuzawa)
(2) The unitary group U(H) on a separable infinite-dimensional HiIbert space and subgroups of U(H) which
are Polish with respect to either the strong topology or the norm topology. (3)Study of a family of
unitary representations of the orthogonal Hilbert-Schmidt group.

For (1), we obtained a characterization of when a unitarizable group is amenable via some action of
the group on a certain set of probability measures related to continuous positive type functions on
aHilbert space. For (2) we showed that a unital Cx—algebra A has strongly unitarily representable unitary
group with the norm topology if and only if A is finite-dimensional. For each 1<=p finite, the group
U p(H) of those unitaries u for which u-1 is in the Schatten p—class (equipped with the metric topology
defined by the p-norm) does not have property (FH).

U 1(H) is normunitarily representable in the sense that it embeds as a norm closed subgroup of U(H)
(we are preparing a paper including these results)

We also considered an equivalence relation (so cal led Weyl-von Neumann equivalence) defined on the space
SA(H) of self-adjoin operators on H, and showed that the closed subset of R on which the Weyl-von Neumann
theorem holds are exactly those which do not have large gaps at infinite

For (3) we obtained several unitary representations from positive self-adjoint operators and obtained
some sufficient conditions of when such representations are factorial and when given two such
representations are unitarily equivalent




