研究成果報告書

(国立情報学研究所の民間助成研究成果概要データベース・登録原稿)

研究テーマ (和文) AB		土壌表層のプロセスを考慮した水田からの亜酸化窒素排出モデル					
研究テーマ (欧文) AZ		A mechanistic model for nitrous oxide emission from rice paddy in conjunction with processes in the surface soil					
研究氏 代表名	ከ ሃ ከተ cc	姓)リヤ	名)ショウヘイ	研究期間 в	2013 ~ 2014年		
	漢字 CB	利谷	翔平	報告年度 YR	2014年		
	ローマ字 cz	Riya	Shohei	研究機関名	東京農工大学		
研究代表者 cp 所属機関・職名		東京農工大学・助教					

概要 EA (600字~800字程度にまとめてください。)

水田は、強力な温室効果能を有す亜酸化窒素(N_2O)の排出源である。 N_2O は落水(水を抜き、土壌を乾燥させる操作)後に突発的かつ多量に排出されるが、既往のモデルでは突発的排出の時期や量の予測性は不十分である。本研究では、落水後の土壌表層が大気に曝露されることに着目し、酸素と N_2O の生成・消費の関係を明らかにし、落水後の N_2O 排出を正確に表現できるモデルの構築を目指す。

本研究では、(1)落水後水田土壌表層における酸素濃度と亜酸化窒素生成・消費速度の関係、(2)異なる酸素濃度における亜酸化窒素生成・消費特性、(3)亜酸化窒素の起源推定および(4)落水後の亜酸化窒素排出モデル構築に向けた表層のパラメータ推定を行った。

水田土壌を充填した土壌カラムを湛水し、自然蒸発により落水を模擬し、微小電極により土壌表層 $0-2~cm\sigma N_2O$ 濃度および O_2 濃度を測定した。その結果、落水から1時間後に土壌深さ約10~mmを最大濃度とする N_2O 濃度分布が形成された。さらに、 N_2O 濃度分布に基づいて推定した N_2O 生成速度分布および酸素濃度分布から、8-14~mmの還元層における N_2O 生成が示唆された。

 N_2O 生成に関与する機能遺伝子の発現量(mRNA)量を深さ毎に測定したところ、脱窒に関与する機能遺伝子 (nirK) の急激な増加が深さ 5–10 mm において確認された。土壌深さ 0–5 mm において NO_3 ⁻¹⁰ の生成が確認されたことから、落水後の N_2O 生成は表層で生成した硝酸が還元的な下層に拡散し、脱窒を受けることで起こることが示唆された。

落水直後の土壌 0-5 mm および 5-10 mm を培養し、異なる酸素濃度における N_2O 生成および N_2O 消費 のパラメータを求めた。溶存酸素濃度が 0 mg O_2/L の条件において、5-10 mm において明確な N_2O 生成活性が確認され、nirK mRNA と同様の結果となった。また、 N_2O 消費活性は 0-5 mm より 5-10 mm の方が 10 倍以上高く、酸素濃度の増加に伴い低下する傾向が見られた。

以上の結果から、落水後の土壌では脱窒が主要な N_2O 生成経路であり、 N_2O 生成および消費とも還元層で主に起こることが示唆された。

キーワード FA	水田	落水	亜酸化窒素
······································			

(以下は記入しないでください。)

助成財団コード TA	研究課題番号 🗚			
研究機関番号 AC	シート番号	179		

発表文献(この研究を発表した雑誌・図書について記入してください。)									
雜誌	論文標題GB								
	著者名 GA		雑誌名 GC						
	ページ GF	~	発行年 GE					巻号 GD	
雑誌	論文標題GB					ounon .			
	著者名 GA		雑誌名 GC						
	ページ GF	?	発行年 GE					巻号 GD	
h #	論文標題GB								
雑誌	著者名 GA		雑誌名 GC						
	ページ GF	~	発行年 GE					巻号 GD	
	著者名 HA								
図書	書名 HC								
	出版者 нв		発行年 HD					総ページ HE	
図書	著者名 HA								
	書名 HC								
	出版者 нв		発行年 HD		ALCANO ANDRES NAMED			総ページ HE	

欧文概要 EZ

Rice paddy field is known as a source of nitrous oxide (N_2O), a strong greenhouse gas. In rice paddy field, a large amount of N_2O is emitted in a short time after drainage. In present simulation model, it has been difficult to predict such emission dynamics. The aim of this study is to develop a simulation model to predict N_2O emission during drainage. We focused on relationship between N_2O production and consumption, and oxygen (O_2) because soil surface is exposed to the atmosphere after drainage.

In this study, we carried out 1) clarification of relationship between N_2O production and consumption, and oxygen (O_2) concentration in the surface soil after drainage, 2) characterization of dependency of N_2O production and consumption on O_2 concentration, 3) estimation of source of N_2O production, and 4) estimation of parameters for modeling.

Column study was conducted to clarify N_2O and O_2 concentration profiles and reaction responsible for N_2O production. Microsensor measurement suggested that maximum N_2O concentration was located in the 10 mm soil depth. Furthermore, from analysis of O_2 concentration profile and estimation of N_2O production rate, it was suggested that N_2O was produced in anoxic layer (8-14 mm depth).

nirK mRNA, one of the mRNA for denitrification enzyme, measurement showed increase in abundance of nirK mRNA after drainage in 5-10 mm depth. In addition, NO_3^- , which is substrate for denitrification, was only present in oxic layer (0-5 mm). These results indicate that N_2O was produced in anoxic layer by denitrification of NO_3^- , which is diffused from oxic layer.

Parameters for N_2O production and consumption in 0-5 and 5-10 mm obtained basing on Michaelis-Menten equation, suggested that N_2O production was maximum under 0 mg O_2/L in 5-10 mm, in line with result of nirK mRNA. For N_2O consumption, 10 times larger consumption rate was obtained from 5-10 mm than those in 0-5 mm and the consumption rate was decreased with increase in O_2 concentration.

These results indicated that denitrification in the anoxic layer of surface soil has important role on N₂O production as well as consumption after drainage.