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Mouse trophoblast stem cells have the potency to differentiate into the placental tissue and finally into
trophoblast giant cells (TGCs). TGCs have unique cell cycle called “endoreduplication” that repeat
G-phase and S-phase without entering mitosis and without undergoing cytokinesis, and form polyploid.
Prolactin (Prl) and Cathepsin (Cts) genes are expressed specifically in TGCs and forming huge gene
clusters on mouse chromosome 13, located at 13gqA3.1 and 13gB2, respectively. In the present study in
order to clarify the spatially specific arrangement of these gene clusters and to elucidate how both gene
clusters are regulated into their transcriptionally activation during formation of TGCs. Firstly, we examined
the chromosome territory during TGCs formation using whole-chromosome painting probes (chromosome
5,9, 12, 13 and 14). In some TGCs, chromosome 13 was not condensed. This uncondensed chromosome
13 was often detected in larger size of TGCs. Moreover, the decondensed chromosome 5, 9, 12 and 13
were detected in an independent manner. Secondary, we performed three-dimensional fluorescence in
situ hybridization (3D-FISH) with specific BAC-clones for Pr/ and Cts genes. The results showed that the
fluorescent spots of Prl and Cts genes were detected within the compact region in small sized TGCs
(=8C), whereas these spots tended to be dispersed widely in large sized TGCs (=8C). In addition,
chromosome 13 territories were often decondensed and dispersed in large sized TGCs (28C) suggesting
that chromosome territories might be disrupted during formation of TGCs. Further studies will reveal how
such disruptions of chromosome territories have affect to the gene expression of Prl and Cts genes during
formation of TGCs.




