研究成果報告書

(国立情報学研究所の民間助成研究成果概要データベース・登録原稿)

研究テ	-ーマ 和文) AB	シェーグレン症候群の自然発症メカニズムの解明						
研究テーマ (欧文) AZ		The elucidation of the natural development-of-symptoms mechanism of Sjoegren syndrome.						
研 究氏	<mark>አጶ</mark> カታ cc	姓)マルヤマ	名) タカシ	研究期間 в	2012~ 2013 年			
代	漢字 св	丸山	貴司	報告年度 YR	2014 年			
表名 者	□マ字 cz	MaruYama	Takashi	研究機関名	東北大学·生命科学研究科			
研究代表者 co 所属機関・職名		岐阜大学・医学系研究科 テニュアトラック助教(報告時)						

概要 EA (600 字~800 字程度にまとめて下さい。)

シェーグレン症候群の分子メカニズムを明らかとするため、新たなモデルマウスとして報告された $I\kappa B-\zeta$ 欠損マウスの解析を行った(Immunity, 2013. Vol38. 450-460.)。 $I\kappa B-\zeta$ 欠損マウスより、制御性 T 細胞を精製し、その性状解析を行った所、興味深い事に免疫抑制能力の低下が認められた。そこで、T 細胞特異的な $I\kappa B-\zeta$ 欠損マウスを新たに作成し、その性状解析についても研究を行った所、このマウス においては老化に伴うシェーグレン症候群の発症は認められなかった。しかし、末梢リンパ組織におけ る T 細胞の活性化および制御性 T 細胞の免疫抑制能力の低下が認められた事から、 $I\kappa B-\zeta$ 欠損マウス で認められるシェーグレン症候群において、制御性 T 細胞における $I\kappa B-\zeta$ の関与は薄いものの、炎症応 答の増悪には寄与している事が示唆された(論文投稿中)。

また、制御性T細胞特異的な ΙκB-ζ欠損マウスにおいても、シェーグレン症候群様の自己免疫疾患は 発症しなかった。

さらに申請者らは、シェーグレン症候群モデルにおいても認められる自己抗体価の上昇が、病体の増 悪に関与しているのではないかと推察し、B細胞特異的な $I\kappa$ B- ζ 欠損マウスの解析を行った(B細胞は、 抗体産生能を示す免疫細胞である。) B 細胞特異的な $I\kappa$ B- ζ 欠損マウスにおいては、シェーグレン症 候群様の自己免疫疾患を呈さず、また、末梢リンパ組織における免疫細胞の活性化なども認められな い事、自己抗体についても野生型マウスとかわらない事から、こちらの関与も薄い事が示唆された。興 味深い事に、B 細胞においても、TLR 刺激を介した $I\kappa$ B- ζ の発現が認められ、T細胞非依存的な抗体産 生に寄与している事が明らかとなった(2014. JBC 289:30925-30936)。

つまり、IκB-ζ欠損マウスにおいては、涙腺上皮のアポトーシスの亢進により、「細胞が活性化する事 で、自己抗体産生などを促している事が明らかとなってきた。また、免疫制御を司る制御性 「細胞の免 疫抑制能力の低下も、シェーグレン症候群の増悪に寄与している事が明らかとなってきた。

キーワード FA シェーグレン症候群 制御性 T 細胞 T 細胞 B 細胞

(以下は記入しないで下さい。)

助成財団コード⊤ѧ			研究課題番号 🗛					
研究機関番号 AC			シート番号					

発表文献(この研究を発表した雑誌・図書について記入して下さい。)												
雑誌	論文標題GB	Control of Toll-like Receptor-Mediated T Cell-Independent Type 1 Antibody Responses by the Inducible Nuclear Protein $IkB-\zeta$										
	著者名 GA	Hanihara-Tatsuza wa, F., et al.	雑誌名 GC	J Biol Chem								
	ページ GF	30925~30936	発行年 GE	2	0	1	4	巻号 GD	289			
雑	論文標題GB	The Nuclear IkB Family Protein IkB _{NS} Influences the Susceptibility to Experimental Autoimmune Encephalomyelitis in a Murine Model										
	著者名 GA	Kobayashi, S., et al.	雑誌名 GC	PLOS One								
誌	ページ GF	e110838	発行年 GE	2	0	1	4	巻号 GD	9 (10)			
雑	論文標題GB											
***	著者名 GA		雑誌名 gc									
	ページ GF	~	発行年 GE					巻号 GD				
X	著者名 HA											
書	書名 HC											
	出版者 нв		発行年 нр					総ページ нe				
図書	著者名 на											
	書名 HC											
	出版者 нв		発行年 нр					総ページ нe				

欧文概要 EZ

(**Purpose**) Id3 KO mice develop Sjögren syndrome with age, due to reduced generation of regulatory T cells and their subsequent lack of suppressor activity (Maruyama et al., Nature Immunology 2011). Therefore, using a novel, Sjögren syndrome mouse model with $I\kappa B-\zeta$ deficiency (Immunity, 2013. Vol38. 450-460), we determined whether regulatory T cells play a key role in Sjögren syndrome in association with age.

(**Results**) We found that regulatory T cells from $I\kappa B-\zeta$ -deficient mice have a lower level of immune suppression. We generated T cell-specific, $I\kappa B-\zeta$ -deficient mice and found that they did not develop Sjögren syndrome with age. However, these mice showed more effector/memory T cells in peripheral lymphnodes and also showed lower immune suppression by regulatory T cells. Therefore, $I\kappa B-\zeta$ in regulatory T cells plays an important role in immune suppression and could be important for maintenance of immune homeostasis: however, it is also not associated with development of Sjögren syndrome. We also found that these mice did not develop Sjögren syndrome with age.

In addition, we generated B-cell-specific, $I\kappa B-\zeta$ deficient mice to clarify the role of B cells in Sjögren syndrome. Not only did Sjögren syndrome develop with age, but a high concentration of anti-nuclear antibody in the serum was also observed in $I\kappa B-\zeta$ deficient mice. However, B-cell-specific, $I\kappa B-\zeta$ deficient mice did not develop Sjögren syndrome and a high concentration of anti-nuclear antibody was not noted in the serum. Interestingly, Toll-like receptor stimulation induced $I\kappa B-\zeta$ in B cells and regulatory T-cell-independent antibody production (Hanihara-Tatsuzawa, et al., 2014 JBC, in press).

(**Conclusion**) $I_{\kappa}B-\zeta$ deficient mice show enhanced apoptosis in epidermal cells, which activates T cells, which in turn help to produce large amounts of anti-nuclear antibody by B cells. Lower levels of regulatory T cell suppression in $I_{\kappa}B-\zeta$ deficient mice may be one of the factors responsible for developing Sjögren syndrome with age, but it is not essential for the initial phase of this syndrome.