研究成果報告書

(国立情報学研究所の民間助成研究成果概要データベース・登録原稿)

研究テ	- 一マ 和文) AB	二酸化炭素加圧による薬剤の融点降下機構の分光学的解明						
研究テ	ーマ 欧文) AZ	Spectroscopic Study of Melting Point Depression by High-Pressure Carbon Dioxide						
研究代表名	ከタカナ cc	姓)タケバヤシ	名)ヨシヒロ	研究期間 в	2011~ 2012年			
	漢字 CB	竹林	良浩	報告年度 YR	2013年			
	□-7 字 cz	TAKEBAYASHI	YOSHIHIRO	研究機関名	産業技術総合研究所			
研究代表者 cp 所属機関・職名		独立行政法人 産業技術総合研究所 ナノシステム研究部門 主任研究員						

概要 EA (600字~800字程度にまとめてください。)

固体の有機化合物に、 CO_2 で 10 MPa 程度の圧力をかけると、その融点が数 $^{\circ}$ C~数 10 $^{\circ}$ C低下することが知られている。この現象を利用すると、薬剤を比較的低い温度で融解させ、混合や微粒化などの流体プロセスに供することが可能になる。この融点降下を熱力学的に解析するために必要となる、融液中への CO_2 の溶解度を、近赤外分光法を用いて高圧下でその場測定する手法を開発し、ビフェニルとナフタレンに適用した。有機物の濃度は、C-H 伸縮振動の 3 倍音の吸光度を用いて定量し、 CO_2 の濃度は、 $2\nu_1+\nu_3$ 結合振動から求めた。得られた融液中の CO_2 モル分率は、圧力の増加関数であり、20 MPa で約 0.6 に達すること、温度を下げるとわずかに増加することが分かった。また、溶解した CO_2 周りの分子間相互作用を、ピークシフトから評価したところ、圧力増加とともに弱くなることが示された。これは、 CO_2 の溶解により液相の体積が膨張するためと考えられる。

得られた溶解度データをもとに、系を Peng-Robinson 型の状態方程式でモデル化し、その異種分子間相互作用パラメータ k_{ij} を決定した。このモデルを用いて気液固の 3 相平衡を計算すると、融点の圧力依存性(10 MPa 程度まで急激に低下するが、それ以上の圧力ではあまり変化しない)を理論的に再現できた。そこで、融点の変化を、2 つの効果(①CO2 溶解の効果と②圧力上昇の効果)に分割し、それらの競合で説明した。前者は圧力に比例して融点を約 8℃上昇させるのに対し、後者は 30℃低下させることが分かった。前者については、さらに混合の理想性・非理想性の寄与を分離し、 CO_2 溶解による活量係数の変化が、融点降下に有意に影響を及ぼすことを明らかにした。

以上により、 CO_2 加圧による融点降下を理解し活用するための、分光学的な組成測定法と、熱力学的な相平衡計算法の基盤を確立することができた。

キーワード FA	近赤外分光法	超臨界二酸化炭素	相平衡	分子間相互作用
(以下は記入しない	いでください。)			

助成財団コード ℸム			研究課題番号 AA						
研究機関番号 AC				シート番号					

発表文献 (この研究を発表した雑誌・図書について記入してください。)												
雑	論文標題GB	"Near-infrared spectroscopic measurements of volume expansion and composition of CO ₂ -expanded ethyl acetate, acetone, tetrahydrofuran, acetonitrile, methanol-OD, and dimethyl sulfoxide"										
誌	著者名 GA	Y. Takebayashi, K. Sue, Y. Hakuta, T. Furuya, S. Yoda	雑誌名 GC	Vibrational Spectroscopy								
	ページ GF	42 ~ 48	発行年 GE	2	0	1	4	巻号 GD	70			
雑誌	論文標題GB	"Near-infrared spectroscopic solubility measurement for thermodynamic analysis of melting point depressions of biphenyl and naphthalene under high-pressure CO ₂ "										
	著者名 GA	Y. Takebayashi, K. Sue, Y. Hakuta, T. Furuya, S. Yoda	雑誌名 GC	The Journal of Supercritical Fluids								
	ページ GF	91 ~ 99	発行年 GE	2	0	1	4	巻号 GD	86			
雑	論文標題GB											
誌	著者名 GA		雑誌名 gc									
	ページ GF	~	発行年 GE					巻号 GD				
図	著者名 HA											
書	書名 HC											
	出版者 нв		発行年 HD					総ページ HE				
図	著者名 HA											
書	書名 HC											
	出版者 нв		発行年 HD					総ページ HE				

欧文概要 EZ

Melting temperatures of organic solids are often depressed by high-pressure CO_2 due to a dissolution of CO_2 in the molten organic compounds. The melting point depression enables various fluid processes, e.g., emulsification and micronization, at relatively low temperatures. For thermodynamic analysis of the melting point depression, solubilities of CO_2 in molten biphenyl and naphthalene were measured in-situ by near-infrared spectroscopy at various temperatures and pressures up to 20 MPa. The molarity of the organic component was determined from the decrease in the absorbance around 8780 cm⁻¹ assigned to the second overtone 3v of the C-H stretching vibration, and that of CO_2 was obtained from the increase in the absorbance around 5080 cm^{-1} due to the $2v_1+v_3$ combination band. The mole fraction of CO_2 in the liquid phase was found to be an increasing function of the pressure up to ca. 0.6 at 20 MPa and a weakly decreasing function of the temperature. Molecular interaction around CO_2 dissolved in the liquid phase was also evaluated from the peak shift of the $2v_1+v_3$ band, and was shown to decrease with increasing CO_2 pressure due to the volume expansion of the liquid phase.

The CO_2 solubility data was utilized for modeling of the fluid mixtures by the Peng-Robinson equation of state with a binary interaction parameter k_{ij} . Calculation of the solid-liquid-gas phase equilibrium using the value well described a large decrease in the melting temperature with increasing pressure up to 10 MPa followed by a small change at higher pressures. The melting point change was interpreted in terms of a competition between the CO_2 solubility effect and the hydrostatic pressure effect. The hydrostatic pressure effect was shown to increase the melting point by ca. 8 °C at 20 MPa, whereas the CO_2 solubility effect to decrease it by ca. 30 °C. The thermodynamic understanding of the melting point depression facilitates the development of novel fluid processes using molten organic compounds under high-pressure CO_2 .