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We consider the standing waveV (t, x)=e" {i A tJu(x) of the following quasilinear Schrodinger equation
arising in plasma physics:

Y t=-A¥YHVX)Y-|Y]| {p-11¥Y-k YA(V]"2). D)
We study the following quasilinear elliptic problem which appears as the stationary problem:
—Au+ (V) +A)u-kuA W2)=lul"{p-1}u in R°N. 2)

When « =0, problem (1) has been widely considered, and the stability of the standing wave is
wel |-studied. On the other hand, Brizhik et al. (2001), who derived the model, stated by a formal argument
that the quasilinear term stabilizes the standing wave if x£>0. But it is not yet given the rigorous
proof. One of the reasons is that the solution set of the stationary problem is not clear. In this
research, we focused on the stationary problem (2) and studied the existence and the uniqueness of
solutions. More precisely, we obtain the following results.

1. Existence of a positive solution for non-constant potentials: When the potential is non-constant,
the existence of solutions becomes a delicate problem because of the lack of the compactness of the
Sobolev embedding. In this research, we proved the existence of a positive solution for a wider class
of potentials, compared to previous works, by using the variational method.

2. Existence and uniqueness of ground states for constant potentials: There have been many results
on the existence of positive solutions. But there is only a partial result on the existence of a ground
state which is the most important in physics. In this research, we studied the existence of the ground
state of (2) when the potential is constant. We obtained an optimal result for the existence. Moreover
we proved the ground state is unique under some conditions on p.

We now work on asymptotic behavior of solutions as x—0. When x=0, it is known that the positive
solution of the stationary problem is unique. From this fact, we will try an approach to the uniqueness
of ground states by the bifurcation theory.




